Papers on behavior of larval zebrafish

Behavioral recording

Phototaxis

  1. Zebrafish larvae show negative phototaxis to near-infrared light. Hartmann S, Vogt R, Kunze J, Rauschert A, Kuhnert KD, Wanzenböck J, Lamatsch DK, Witte K. PLoS One. 2018 Nov 28;13(11):e0207264. doi: 10.1371/journal.pone.0207264. eCollection 2018.
  2. Sensorimotor computation underlying phototaxis in zebrafish. Wolf S, Dubreuil AM, Bertoni T, Böhm UL, Bormuth V, Candelier R, Karpenko S, Hildebrand DGC, Bianco IH, Monasson R, Debrégeas G. Nat Commun. 2017 Sep 21;8(1):651. doi: 10.1038/s41467-017-00310-3.
  3. Distinct retinal pathways drive spatial orientation behaviors in zebrafish navigation.
    Burgess HA, Schoch H, Granato M. Curr Biol. 2010 Feb 23;20(4):381-6. doi: 10.1016/j.cub.2010.01.022. Epub 2010 Feb 11.

Rheotaxis

  1. A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish. Oteiza P, Odstrcil I, Lauder G, Portugues R, Engert F. Nature. 2017 Jul 27;547(7664):445-448. doi: 10.1038/nature23014. Epub 2017 Jul 12. https://doi.org/10.1038/nature23014
  2. Rheotaxis of Larval Zebrafish: Behavioral Study of a Multi-Sensory Process. Olive R, Wolf S, Dubreuil A, Bormuth V, Debrégeas G, Candelier R. Front Syst Neurosci. 2016 Feb 23;10:14. doi: 10.3389/fnsys.2016.00014. eCollection 2016.

Thigmotaxis

  1. Exploratory behaviour in the open field test adapted for larval zebrafish: impact of environmental complexity. Ahmad F, Richardson MK. Behav Processes. 2013 Jan;92:88-98. doi: 10.1016/j.beproc.2012.10.014. Epub 2012 Nov 1.

Optokinetic reseponse

  1. Optogenetic localization and genetic perturbation of saccade-generating neurons in zebrafish. Schoonheim PJ, Arrenberg AB, Del Bene F, Baier H. J Neurosci. 2010 May 19;30(20):7111-20. doi: 10.1523/JNEUROSCI.5193-09.2010.
  2. Measuring the optokinetic response of zebrafish larvae. Brockerhoff SE. Nat Protoc. 2006;1(5):2448-51.
  3. Forward Genetic Analysis of Visual Behavior in Zebrafish. Akira Muto , Michael B Orger , Ann M Wehman, Matthew C Smear, Jeremy N Kay, Patrick S Page-McCaw, Ethan Gahtan, Tong Xiao, Linda M Nevin, Nathan J Gosse, Wendy Staub, Karin Finger-Baier, Herwig Baier
    Published: November 25, 2005 https://doi.org/10.1371/journal.pgen.0010066
  4. Contrast sensitivity, spatial and temporal tuning of the larval zebrafish optokinetic response. Rinner O, Rick JM, Neuhauss SC. Invest Ophthalmol Vis Sci. 2005 Jan;46(1):137-42.
  5. Retinal network adaptation to bright light requires tyrosinase. Page-McCaw PS, Chung SC, Muto A, Roeser T, Staub W, Finger-Baier KC, Korenbrot JI, Baier H. Nat Neurosci. 2004 Dec;7(12):1329-36. Epub 2004 Oct 31.
  6. Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum. Roeser T, Baier H. J Neurosci. 2003 May 1;23(9):3726-34.
  7. Optokinetic behavior is reversed in achiasmatic mutant zebrafish larvae. Rick JM, Horschke I, Neuhauss SC. Curr Biol. 2000 May 18;10(10):595-8.
  8. A behavioral screen for isolating zebrafish mutants with visual system defects. Brockerhoff SE, Hurley JB, Janssen-Bienhold U, Neuhauss SC, Driever W, Dowling JE. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10545-9.

Optomotor response

  1. Brain-wide neuronal dynamics during motor adaptation in zebrafish.  Ahrens MB, Li JM, Orger MB, Robson DN, Schier AF, Engert F, Portugues R. Nature. 2012 May 9;485(7399):471-7. doi: 10.1038/nature11057.
  2. Forward Genetic Analysis of Visual Behavior in Zebrafish. Akira Muto , Michael B Orger , Ann M Wehman, Matthew C Smear, Jeremy N Kay, Patrick S Page-McCaw, Ethan Gahtan, Tong Xiao, Linda M Nevin, Nathan J Gosse, Wendy Staub, Karin Finger-Baier, Herwig Baier
    Published: November 25, 2005 https://doi.org/10.1371/journal.pgen.0010066
  3. Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum. Roeser T, Baier H. J Neurosci. 2003 May 1;23(9):3726-34.
  4. Perception of Fourier and non-Fourier motion by larval zebrafish. Orger MB, Smear MC, Anstis SM, Baier H. Nat Neurosci. 2000 Nov;3(11):1128-33.

Prey capture / Feeding behavior / Eating

  1. Six6 and Six7 coordinately regulate expression of middle-wavelength opsins in zebrafish. Ogawa Y, Shiraki T, Asano Y, Muto A, Kawakami K, Suzuki Y, Kojima D, Fukada Y. Proc Natl Acad Sci U S A. 2019 Feb 14. pii: 201812884. doi: 10.1073/pnas.1812884116.
  2. Role of Olfactorily Responsive Neurons in the Right Dorsal Habenula-Ventral Interpeduncular Nucleus Pathway in Food-Seeking Behaviors of Larval Zebrafish. Chen WY, Peng XL, Deng QS, Chen MJ, Du JL, Zhang BB. Neuroscience. 2019 Apr 15;404:259-267. doi: 10.1016/j.neuroscience.2019.01.057. Epub 2019 Feb 5.
  3. Ablation of a Neuronal Population Using a Two-photon Laser and Its Assessment Using Calcium Imaging and Behavioral Recording in Zebrafish Larvae. Muto A, Kawakami K. J Vis Exp. 2018 Jun 2;(136). doi: 10.3791/57485.
  4. Role of branchiomotor neurons in controlling food intake of zebrafish larvae. (Author manuscript) Allen JR, Bhattacharyya KD, Asante E, Almadi B, Schafer K, Davis J, Cox J, Voigt M, Viator JA, Chandrasekhar A. J Neurogenet. 2017 Sep;31(3):128-137. doi: 10.1080/01677063.2017.1358270. Epub 2017 Aug 16.
  5. Activation of the hypothalamic feeding centre upon visual prey detection. Akira Muto, Pradeep Lal, Deepak Ailani, Gembu Abe, Mari Itoh & Koichi Kawakami. Nature Communications volume 8, Article number: 15029 (2017)
  6. Calcium Imaging of Neuronal Activity in Free-Swimming Larval Zebrafish. Muto A, Kawakami K. Methods Mol Biol. 2016;1451:333-41. doi: 10.1007/978-1-4939-3771-4_23. “Here, we describe a novel method to image neuronal activity of the larval zebrafish brain during prey capture behavior. “
  7. Feeding State Modulates Behavioral Choice and Processing of Prey Stimuli in the Zebrafish Tectum. Filosa A, Barker AJ, Dal Maschio M, Baier H. Neuron. 2016 May 4;90(3):596-608. doi: 10.1016/j.neuron.2016.03.014. Epub 2016 Apr 14.
  8. Sensorimotor decision making in the zebrafish tectum. Barker AJ, Baier H. Curr Biol. 2015 Nov 2;25(21):2804-2814. doi: 10.1016/j.cub.2015.09.055. Epub 2015 Oct 22.
  9. A high-throughput assay for quantifying appetite and digestive dynamics. Jordi J, Guggiana-Nilo D, Soucy E, Song EY, Lei Wee C, Engert F. Am J Physiol Regul Integr Comp Physiol. 2015 Aug 15;309(4):R345-57. doi: 10.1152/ajpregu.00225.2015. Epub 2015 Jun 24.
  10. Spontaneous neuronal network dynamics reveal circuit’s functional adaptations for behavior. Romano SA, Pietri T, Pérez-Schuster V, Jouary A, Haudrechy M, Sumbre G. Neuron. 2015 Mar 4;85(5):1070-85. doi: 10.1016/j.neuron.2015.01.027. Epub 2015 Feb 19.
  11. A dedicated visual pathway for prey detection in larval zebrafish. Semmelhack JL, Donovan JC, Thiele TR, Kuehn E, Laurell E, Baier H. Elife. 2014 Dec 9;3. doi: 10.7554/eLife.04878.
  12. Real-Time Visualization of Neuronal Activity during Perception.
    Akira Muto, Masamichi Ohkura, Gembu Abe, Junichi Nakai, Koichi Kawakami. Published:January 31, 2013 DOI:https://doi.org/10.1016/j.cub.2012.12.040
  13. Visually guided gradation of prey capture movements in larval zebrafish. Patterson BW, Abraham AO, MacIver MA, McLean DL. J Exp Biol. 2013 Aug 15;216(Pt 16):3071-83. doi: 10.1242/jeb.087742. Epub 2013 Apr 25.

  14. Prey capture behavior evoked by simple visual stimuli in larval zebrafish. Bianco IH, Kampff AR, Engert F. Front Syst Neurosci. 2011 Dec 16;5:101. doi: 10.3389/fnsys.2011.00101. eCollection 2011.
  15. Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. Gahtan E, Tanger P, Baier H. J Neurosci. 2005 Oct 5;25(40):9294-303.
  16. Prey tracking by larval zebrafish: axial kinematics and visual control. McElligott MB, O’malley DM. Brain Behav Evol. 2005;66(3):177-96. Epub 2005 Jul 25.
  17. Prey capture by larval zebrafish: evidence for fine axial motor control. Borla MA, Palecek B, Budick S, O’Malley DM. Brain Behav Evol. 2002;60(4):207-29.
  18. Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. Budick SA, O’Malley DM. J Exp Biol. 2000 Sep;203(Pt 17):2565-79.

Escape from predator / escape behavior

  1. Three-dimensional motion tracking reveals a diving component to visual and auditory escape swims in zebrafish larvae. Bishop BH, Spence-Chorman N, Gahtan E. J Exp Biol. 2016 Dec 15;219(Pt 24):3981-3987. Epub 2016 Oct 24.
  2. Neural Circuits Underlying Visually Evoked Escapes in Larval Zebrafish. Dunn TW, Gebhardt C, Naumann EA, Riegler C, Ahrens MB, Engert F, Del Bene F. Neuron. 2016 Feb 3;89(3):613-28. doi: 10.1016/j.neuron.2015.12.021. Epub 2016 Jan 21.
  3. Sensorimotor decision making in the zebrafish tectum. Barker AJ, Baier H. Curr Biol. 2015 Nov 2;25(21):2804-2814. doi: 10.1016/j.cub.2015.09.055. Epub 2015 Oct 22.
  4. A Visual Pathway for Looming-Evoked Escape in Larval Zebrafish. Temizer I, Donovan JC, Baier H, Semmelhack JL. Curr Biol. 2015 Jul 20;25(14):1823-34. doi: 10.1016/j.cub.2015.06.002. Epub 2015 Jun 25.
  5. Prey fish escape by sensing the bow wave of a predator. Stewart WJ, Nair A, Jiang H, McHenry MJ. J Exp Biol. 2014 Dec 15;217(Pt 24):4328-36. doi: 10.1242/jeb.111773.
  6. Zebrafish larvae evade predators by sensing water flow. Stewart WJ, Cardenas GS, McHenry MJ. J Exp Biol. 2013 Feb 1;216(Pt 3):388-98. doi: 10.1242/jeb.072751.

Avoidance from noxious stimuli

  1. The swimming plus-maze test: a novel high-throughput model for assessment of anxiety-related behaviour in larval and juvenile zebrafish (Danio rerio). Varga ZK, Zsigmond Á, Pejtsik D, Varga M, Demeter K, Mikics É, Haller J, Aliczki M. Sci Rep. 2018 Nov 8;8(1):16590. doi: 10.1038/s41598-018-34989-1. “the swimming plus-maze (SPM) test paradigm, a tool to assess anxiety-related avoidance of shallow water bodies in early developmental stages”
  2. A Brain-wide Circuit Model of Heat-Evoked Swimming Behavior in Larval Zebrafish. Haesemeyer M, Robson DN, Li JM, Schier AF, Engert F. Neuron. 2018 May 16;98(4):817-831.e6. doi: 10.1016/j.neuron.2018.04.013. Epub 2018 May 3.

Fear response

  1. Left Habenular Activity Attenuates Fear Responses in Larval Zebrafish. Duboué ER, Hong E, Eldred KC, Halpern ME. Curr Biol. 2017 Jul 24;27(14):2154-2162.e3. doi: 10.1016/j.cub.2017.06.017. Epub 2017 Jul 14.

Non-associative learning, habituation

  1. Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. Roberts AC, Reichl J, Song MY, Dearinger AD, Moridzadeh N, Lu ED, Pearce K, Esdin J, Glanzman DL. PLoS One. 2011;6(12):e29132. doi: 10.1371/journal.pone.0029132. Epub 2011 Dec 28.
  2. Non-associative learning in larval zebrafish. Best JD, Berghmans S, Hunt JJ, Clarke SC, Fleming A, Goldsmith P, Roach AG. Neuropsychopharmacology. 2008 Apr;33(5):1206-15. Epub 2007 Jun 20.

Classical conditioning

  1. Granule cells control recovery from classical conditioned fear responses in the zebrafish cerebellum. Koji Matsuda, Masayuki Yoshida, Koichi Kawakami, Masahiko Hibi & Takashi Shimizu. Scientific Reportsvolume 7, Article number: 11865 (2017) Note: Authors used about 20 day postfertilization juveniles.
  2. Ontogeny of classical and operant learning behaviors in zebrafish. André Valente, Kuo-Hua Huang, Ruben Portugues and Florian Engert. Learn. Mem. 2012. 19: 170-177. doi:10.1101/lm.025668.112  Note: Authors observed classical conditioning as early as 4 week old juveniles
  3. The Habenula Prevents Helpless Behavior in Larval Zebrafish. Aletheia Lee, Ajay, S.Mathuru, CathleenTeh, CarolineKibat, VladimirKorzh, Trevor B.Penney, SureshJesuthasan. Current Biology Volume 20, Issue 24, 21 December 2010, Pages 2211-2216 Aurhors observed avoidance behavior (LED+electrical shock) at “larval” stage. They did not specify the age of larvae used for the bevhavioral recording  but showed 3 week old brain for the KilleRed or Tetanus toxin expression. They seem to have used 3 week old fish.

Operant conditioning

  1. Ontogeny of classical and operant learning behaviors in zebrafish. André Valente, Kuo-Hua Huang, Ruben Portugues and Florian Engert. Learn. Mem. 2012. 19: 170-177. doi:10.1101/lm.025668.112 Note: Authors observed operant conditioning as early as 3 week old juveniles
  2. The Habenula Prevents Helpless Behavior in Larval Zebrafish. Aletheia Lee, Ajay, S.Mathuru, CathleenTeh, CarolineKibat, VladimirKorzh, Trevor B.Penney, SureshJesuthasan. Current Biology Volume 20, Issue 24, 21 December 2010, Pages 2211-2216 Aurhors observed avoidance behavior (LED+electrical shock) at “larval” stage. They did not specify the age of larvae used for the bevhavioral recording  but showed 3 week old brain for the KilleRed or Tetanus toxin expression. They seem to have used 3 week old fish.

Multimodal integragion

  1. Visual input modulates audiomotor function via hypothalamic dopaminergic neurons through a cooperative mechanism. Mu Y, Li XQ, Zhang B, Du JL. Neuron. 2012 Aug 23;75(4):688-99. doi: 10.1016/j.neuron.2012.05.035.

Sleep

  1. Genetic ablation of hypocretin neurons alters behavioral state transitions in zebrafish. Elbaz I, Yelin-Bekerman L, Nicenboim J, Vatine G, Appelbaum L. J Neurosci. 2012 Sep 12;32(37):12961-72. doi: 10.1523/JNEUROSCI.1284-12.2012.
  2. Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. Prober DA, Rihel J, Onah AA, Sung RJ, Schier AF. J Neurosci. 2006 Dec 20;26(51):13400-10.
  3. Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons. Appelbaum L, Wang G, Yokogawa T, Skariah GM, Smith SJ, Mourrain P, Mignot E. Neuron. 2010 Oct 6;68(1):87-98. doi: 10.1016/j.neuron.2010.09.006. “To monitor larvae response to SD and melatonin application, locomotor activity of 5–7 dpf larvae was recorded with an automated video-tracking system (Videotrack; ViewPoint Life Sciences, Montreal, Canada, see Supplemental Experimental Procedures) as previously described (Appelbaum et al., 2009). “
  4. Sleep-wake regulation and hypocretin-melatonin interaction in zebrafish. Appelbaum L, Wang GX, Maro GS, Mori R, Tovin A, Marin W, Yokogawa T, Kawakami K, Smith SJ, Gothilf Y, Mignot E, Mourrain P. Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21942-7. doi: 10.1073/pnas.906637106. Epub 2009 Dec 4. “Behavior was monitored with either Adult Fish Sleep Recording System or ViewPoint system.”

Laterality in behavior

  1. Left Habenula Mediates Light-Preference Behavior in Zebrafish via an Asymmetrical Visual Pathway. Zhang BB, Yao YY, Zhang HF, Kawakami K, Du JL. Neuron. 2017 Feb 22;93(4):914-928.e4. doi: 10.1016/j.neuron.2017.01.011. Epub 2017 Feb 9.
  2. Eye use during viewing a reflection: behavioural lateralisation in zebrafish larvae. Sovrano VA, Andrew RJ. Behav Brain Res. 2006 Feb 28;167(2):226-31.
  3. Early asymmetries in the behaviour of zebrafish larvae. Watkins J, Miklósi A, Andrew RJ. Behav Brain Res. 2004 May 5;151(1-2):177-83.

Locomotor activity, image analysis, chemical screen

  1. Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Bruni G et al. Nat Chem Biol. 2016 Jul;12(7):559-66. doi: 10.1038/nchembio.2097. Epub 2016 May 30.
  2. ZebraZoom: an automated program for high-throughput behavioral analysis and categorization. Mirat O1, Sternberg JR, Severi KE, Wyart C. Front Neural Circuits. 2013 Jun 12;7:107. doi: 10.3389/fncir.2013.00107. eCollection 2013.
  3. Tracking zebrafish larvae in group–status and perspectives. Martineau PR, Mourrain P. Methods. 2013 Aug 15;62(3):292-303. doi: 10.1016/j.ymeth.2013.05.002. Epub 2013 May 24.
  4. Automated measurement of zebrafish larval movement. Clinton L. Cario Thomas C. Farrell Chiara Milanese Edward A. Burton. The Journal of Physiology. First published: 28 July 2011 https://doi.org/10.1113/jphysiol.2011.207308 Authors made a Matlab script which is open to public.
  5. A novel high-throughput imaging system for automated analyses of avoidance behavior in zebrafish larvae. Sean D.Pelkowski, Mrinal Kapoor, Holly A.Richendrfer, Xingyue Wang, Ruth M.Colwill, RobbertCreton. Behavioural Brain Research Volume 223, Issue 1, 30 September 2011, Pages 135-144
  6. Imaging escape and avoidance behavior in zebrafish larvae (Author manuscript)
    Ruth M. Colwill and Robbert Creton. Rev Neurosci. 2011 Feb 1; 22(1): 63–73. Review article.
  7. Automated analysis of behavior in zebrafish larvae. RobbertCreton. Behavioural Brain Research
    Volume 203, Issue 1, 12 October 2009, Pages 127-136. Authors tested recording of OMR, two-fish (larvae) assay.

Locomotion data analysis

  1. Structure of the Zebrafish Locomotor Repertoire Revealed with Unsupervised Behavioral Clustering. Marques JC, Lackner S, Félix R, Orger MB. Curr Biol. 2018 Jan 22;28(2):181-195.e5. doi: 10.1016/j.cub.2017.12.002. Epub 2018 Jan 4.
  2. The Behavioral Space of Zebrafish Locomotion and Its Neural Network Analog. Girdhar K, Gruebele M, Chemla YR. PLoS One. 2015 Jul 1;10(7):e0128668. doi: 10.1371/journal.pone.0128668. eCollection 2015.

Psychophysics / visual perception

  1. Perception of Fourier and non-Fourier motion by larval zebrafish. Orger MB, Smear MC, Anstis SM, Baier H. Nat Neurosci. 2000 Nov;3(11):1128-33.

Time perception

  1. Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval. Sumbre G, Muto A, Baier H, Poo MM. Nature. 2008 Nov 6;456(7218):102-6. doi: 10.1038/nature07351. Epub 2008 Oct 15.

Kin recognition

  1. Olfactory imprinting is triggered by MHC peptide ligands. Hinz C, Namekawa I, Behrmann-Godel J, Oppelt C, Jaeschke A, Müller A, Friedrich RW, Gerlach G. Sci Rep. 2013 Sep 30;3:2800. doi: 10.1038/srep02800.
  2. Influence of kinship and MHC class II genotype on visual traits in zebrafish larvae(Danio rerio). Hinz C, Gebhardt K, Hartmann AK, Sigman L, Gerlach G. PLoS One. 2012;7(12):e51182. doi: 10.1371/journal.pone.0051182. Epub 2012 Dec 10.
  3. Kin recognition in zebrafish: a 24-hour window for olfactory imprinting. Gerlach G, Hodgins-Davis A, Avolio C, Schunter C. Proc Biol Sci. 2008 Sep 22;275(1647):2165-70. doi: 10.1098/rspb.2008.0647.

Social behavior

  1. Ontogeny of collective behavior reveals a simple attraction rule. Hinz RC, de Polavieja GG. Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2295-2300. doi: 10.1073/pnas.1616926114. Epub 2017 Feb 13. “larvae turn toward each other from 7 days postfertilization and increase the intensity of interactions until 3 weeks”
  2. Development of social behavior in young zebrafish. Dreosti E, Lopes G, Kampff AR, Wilson SW. Front Neural Circuits. 2015 Aug 18;9:39. doi: 10.3389/fncir.2015.00039. eCollection 2015. “One week old zebrafish do not show significant social preference whereas most 3 weeks old zebrafish strongly prefer to remain in a compartment where they can view conspecifics.”

Behavioral protocol/method books/Review articles

  1. Analyzing Locomotor Activity in Zebrafish Larvae Using wrMTrck. Selvaraj V, Santhakumar K. Zebrafish. 2017 Jun;14(3):287-291. doi: 10.1089/zeb.2016.1395. Epub 2017 Feb 16. “A freely available plugin, wrMTrck, originally developed to analyze locomotor response in Caenorhabditis elegans, has been used in this study to measure locomotion in zebrafish.”
  2. Automated, high-throughput, in vivo analysis of visual function using the zebrafish. Scott CA, Marsden AN, Slusarski DC. Dev Dyn. 2016 May;245(5):605-13. doi: 10.1002/dvdy.24398. Epub 2016 Mar 6.
  3. Quantification of larval zebrafish motor function in multiwell plates using open-source MATLAB applications. (Author manuscript) Zhou Y, Cattley RT, Cario CL, Bai Q, Burton EA. Nat Protoc. 2014 Jul;9(7):1533-48. doi: 10.1038/nprot.2014.094. Epub 2014 Jun 5.
  4. The rights and wrongs of zebrafish: Behavioral phenotyping of zebrafish. Editors: Kalueff, Allan V. (Ed.) Springer 2017.
  5. Zebrafish Neurobehavioral Protocols. Editors: Kalueff, Allan V., Cachat, Jonathan M. (Eds.) Springer 2011.
  6. Zebrafish Models in Neurobehavioral Research. Editors: Kalueff, Allan V., Cachat, Jonathan M. (Eds.) Springer 2011.
  7. The neural basis of visual behaviors in the larval zebrafish. Portugues R, Engert F. Curr Opin Neurobiol. 2009 Dec;19(6):644-7. doi: 10.1016/j.conb.2009.10.007. Epub 2009 Nov 5. OKR, OMR, prey capture and visual startle response

Calcium imaging in freely swimming zebrafish larvae

  1. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). Cong L, Wang Z, Chai Y, Hang W, Shang C, Yang W, Bai L, Du J, Wang K, Wen Q. Elife. 2017 Sep 20;6. pii: e28158. doi: 10.7554/eLife.28158.
  2. Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish.
    Kim DH, Kim J, Marques JC, Grama A, Hildebrand DGC, Gu W, Li JM, Robson DN. Nat Methods. 2017 Nov;14(11):1107-1114. doi: 10.1038/nmeth.4429. Epub 2017 Sep 11.
  3. Activation of the hypothalamic feeding centre upon visual prey detection. Akira Muto, Pradeep Lal, Deepak Ailani, Gembu Abe, Mari Itoh & Koichi Kawakami. Nature Communications volume 8, Article number: 15029 (2017)
  4. Calcium Imaging of Neuronal Activity in Free-Swimming Larval Zebrafish. Muto A, Kawakami K. Methods Mol Biol. 2016;1451:333-41. doi: 10.1007/978-1-4939-3771-4_23. “Here, we describe a novel method to image neuronal activity of the larval zebrafish brain during prey capture behavior. “
  5. Real-Time Visualization of Neuronal Activity during Perception.
    Akira Muto, Masamichi Ohkura, Gembu Abe, Junichi Nakai, Koichi Kawakami. Published:January 31, 2013 DOI:https://doi.org/10.1016/j.cub.2012.12.040

 

Neuronal activity data analysis

  1. Whole-Brain Neuronal Activity Displays Crackling Noise Dynamics. Ponce-Alvarez A, Jouary A, Privat M, Deco G, Sumbre G. Neuron. 2018 Dec 19;100(6):1446-1459.e6. doi: 10.1016/j.neuron.2018.10.045. Epub 2018 Nov 16.
タイトルとURLをコピーしました